
The US Army's Center for Strategy and Force Evaluation 
i$t%4B'^,*fi.,A   tK   /*■ * » -rj^*) 

RESEARCH PAPER 
CAA-RP-95-4 

t>v.- 

INCORPORATION OF LEARNING CURVE 
COSTS IN ACQUISITION STRATEGY 

OPTIMIZATION 

JULY 1995 

PREPARED BY 
VALUE ADDED ANALYSIS DIVISION 

US ARMY CONCEPTS ANALYSIS AGENCY 
8120 WOODMONT AVENUE 

BETHESDA, MARYLAND  20814-2797 

19950728 012 
MflMiM» lillElslSkS 



DISCLAIMER 

The findings of this report are not to be construed as an 
official Department of the Army position, policy, or decision 
unless so designated by other official documentation. 
Comments or suggestions should be addressed to: 

Director 
US Army Concepts Analysis Agency 
ATTN:  CSCA-RSV 
8120 Woodmont Avenue 
Bethesda, MD 20814-2797 



CAA-RP-95-4 

REPORT DOCUMENTATION PAGE 
Form Approved 

OPM NO. 0704-0188 

Public reporting burden for this collection information is estimated to 1 hour per response, including the time for reviewing instructions, searching existing data 

sources gathering and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect 

of this collection of information. Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of information and Regulatory Affairs, Office of Management 

and Budget, Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

July 1995 

3. REPORT TYPE AND DATES COVERED 

Final, Jul 94 - Jul 95 

4. TITLE AND SUBTITLE 

Incorporation of Learning Curve Costs in Acquisition Strategy 
Optimization 

5. FUNDING NUMBER 

6. AUTHOR(S) 

LTC Andrew G. Loerch 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Concepts Analysis Agency 
8120 Woodmont Avenue 
Bethesda, MD 20814-2797 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

CAA-RP-95-4 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

US Army Concepts Analysis Agency 

10. SPONSORING/ MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILBILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (Maximum 200 words) 

Each year, the United States Army procures billions of dollars worth of weapons and equipment. The 
process of deciding what to buy, in what quantities, and when is extremely complex, requiring extensive 
analysis. Two techniques used"in this analysis are mathematical programming and cost estimation. 
Although they are related through constraints on available procurement funds, the use of nonlinear cost 
learning curves, which better represent system costs as a function of quantity produced, have not been 
incorporated into the mathematical programming formulations that compute the quantities of items to be 
procured. As a result, the solutions obtained could be either suboptimal, or even infeasible with respect to 
budgetary limitations. In this paper, we present a mixed integer linear programming formulation that uses 
a piecewise linear approximation of the learning curve costs for a more accurate portrayal of budgetary 
constraints. In addition, implementation issues are discussed, and performance results are given. 

14. SUBJECT TERMS 

Learning curves, mathematical programming, capital budgeting 

15. NUMBER OF PAGES 

2* 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 
Standard Form 298 



Incorporation of Learning Curve Costs in Acquisition Strategy Optimization 

ABSTRACT 
Each year, the United States Army procures billions of dollars worth of 

weapons and equipment. The process of deciding what to buy, in what quantities, 
and when is extremely complex, requiring extensive analysis.  Two techniques 
used in this analysis are mathematical programming and cost estimation. 
Although they are related through constraints on available procurement funds, 
the use of nonlinear cost learning curves, which better represent system costs as 
a function of quantity produced, have not been incorporated into the mathematical 
programming formulations that compute the quantities of items to be procured. 
As a result, the solutions obtained could be either suboptimal, or even infeasible 
with respect to budgetary limitations.  In this paper, we present a mixed integer 
linear programming formulation that uses a piecewise linear approximation of 
the learning curve costs for a more accurate portrayal of budgetary constraints. 
In addition, implementation issues are discussed, and performance results are 
given. 
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Incorporation of Learning Curve Costs in Acquisition Strategy 
Optimization 

1. INTRODUCTION 
Each year, the United States Army procures billions of dollars worth of 

weapons and equipment so that it can accomplish its worldwide mission of 
deterrence. The process of deciding what to buy to best respond to the threat is 
extremely complex, thus requiring extensive analysis.  Typically cost benefit 
analysis is used as a means of determining relative return. 

Two common techniques used in this analysis are mathematical 
programming and cost estimation.  Although they are related through 
constraints on available procurement funds, the use of nonlinear cost learning 
curves, which better represent system costs as a function of quantity produced, 
have not been incorporated into the mathematical programming formulations 
that compute the quantities of items to be procured. As a result, the solutions 
obtained could be either suboptimal, or even infeasible with respect to budgetary 
limitations. 

Mathematical programming has been frequently used to determine an 
optimal, in some sense, funding and acquisition stream for procurement of Army 
equipment.  Several of these efforts are described below. 

In 1984, the Resource Constrained Procurement Objectives for Munitions 
(RECPOM-85) Study was performed by the US Army Concepts Analysis Agency 
(CAA). See Levy [10]. Its purpose was to develop an optimization model that could 
be used to calculate the best mix of ammunition to procure such that the 
effectiveness of the force would be maximized. A stated limitation of the RECPOM 
optimization model was that it could not consider the costs of the ammunition as a 
function of number of items produced. As an alternative, an average unit cost of 
the items was used that did not vary with quantity. This limitation was never 
resolved and greatly limited the usefulness of the methodology. 

A more general methodology for optimizing acquisition strategy was 
developed as part of the Army Aviation Modernization Tradeoff Requirements 
(AAMTOR) Study, a joint effort between CAA and the Naval Postgraduate School. 
See Brown, et. al. [2].  The optimization model, known as Phoenix, is a large- 
scale, mixed integer program whose objective is to find the minimum cost set of 
equipment quantities, as well as finding the best, with respect to cost, timing of 
the production periods for these items. 

A simplification of the Phoenix Model, called Force Modernization Analyzer 
(FOMOA), was developed at CAA to perform Phoenix-like analyses when the 
production campaigns for the systems under consideration are given and fixed. 
See Coblentz [3]. FOMOA is a relatively fast-running model, and its spreadsheet 
configuration allows easy data input and output display. This model has been 
used to produce acquisition strategies for armored systems, wheeled vehicles, and 
helicopters. 

Neither Phoenix nor FOMOA considers learning curve costs of the systems to 
be procured.  Schwabauer and Nedimala [12]   suggest the following techniques. 



In order to address this problem, production quantities are assumed, a priori, 
likely to be near optimal.  Costs are computed that are associated with these 
quantities which are then used in the budgetary constraints.  When the 
optimization is run, new production quantities are computed which may or may 
not resemble the a priori quantities. Attempts have been made to iteratively 
produce costs and quantities in hopes of convergence.  However, no such 
convergence has been shown to be guaranteed. 

Phoenix and FOMOA have been used to produce acquisition strategies for 
various systems such as helicopters or trucks.  The need arose to provide optimized 
acquisition strategies across system types.   The Value Added Analysis (VAA) 
methodology was developed by CAA to provide these strategies, as well as other 
analysis to support the decision-making necessary to build the Army budget.  See US 
Army [14] for a description of this process.  In this analysis, unlike those previously 
discussed, all of the high priced developmental weapon systems and other equipment 
are considered and compete for shrinking budgetary resources.  As such, the need to 
accurately represent system procurement costs is critical to the success of the 
analysis.  Also, use is made of nonlinear cost-quantity relationships in the "by hand" 
calculations made in the programming and budgeting process by staff officers 
supporting the decision makers.  In order to be consistent with the rest of the 
budgeting work, these relationships must be included in the Value Added analysis 
as well.  See Koury and Loerch [9] for a detailed description of the VAA study. 

In the remainder of this paper, we present a mixed integer programming 
formulation that uses a piecewise linear approximation of the learning curve 
costs for a better portrayal of budgetary constraints.  The implementation of this 
formulation represents the optimization module of the VAA methodology.   This 
optimization model was used extensively to perform the Army Program support 
analyses described above. 

2. LEARNING CURVES 
Learning curves are used to mathematically represent the concept that the 

more items of a particular type a factory produces, the less each item will cost. 
Also known as "progress curves," "improvement curves," and "experience 
curves," they were developed for use in the aircraft industry before and during 
World War II.  Since then, the technique has spread to many other industries. 
The literature is full of publications describing applications, justifications, and 
forms for learning curves.  In the thirties, Wright [15] described the use of 
learning curves in the aircraft industry.   Since then, literally hundreds of articles 
on learning curves have been published.  Dutton, Thomas, and Butler [5] review 
about 300 such articles. 

2.1 Background 
The current atmosphere of defense cuts requires that close attention be paid 

to weapon systems costing.  The front page of the Washington Post on November 9, 
1991, carried the following headline: 

"Cuts in Defense Budget Create New Inefficiencies." 



The article by Pearlstein [11] accompanying this headline describes how reducing 
the total quantities procured of particular weapons increases the unit cost.  This 
effect results in less savings than anticipated from defense cuts.  Learning curve 
effects that influence the costs of weapon system acquisition alternatives must be 
considered to better understand the impact of particular changes in defense 
investment. 

The Federal government in general, and the Department of Defense in 
particular has mandated the use of learning curve costing for cost estimation of 
acquisition systems. See Department of Defense [4]. Each government contractor 
must submit a form quantitatively describing the anticipated learning behavior of 
their manufacturing process.  These data are used by cost analysts throughout 
the acquisition process for determining contract prices, budgetary projections, 
and for performing cost and effectiveness analyses. 

Many forms exist to mathematically depict learning effects.  Probably the 
most popular is the so-called "power", or "exponential", form which is represented 
as follows: 

C(y) = Ayb , 
where 

y       = the cumulative number of items produced, 
C(y) = unit cost of theyth item produced, 
A      = the cost of the first unit produced, and 
b       = the learning parameter. 

Kanton and Zangwill [8] have suggested that this form of the learning curve 
is deficient in that it cannot remain form-invariant under aggregation of costs 
over the subcomponents of the item. However, Stump [13] describes and justifies a 
method to estimate composite learning curves in the power form, overcoming this 
objection. This estimate seems to do well for computing costs at the system level, 
rather than the component level, and the system view is regarded as the 
appropriate one for the Department of the Army program and budget 
development. 

2.2 Learning Curve Models 
Although many variants of the learning curve power model exist, see Yelle 

[16], two are commonly used in these applications.  They are the cumulative 
average theory model and the unit theory model. Both are described below. 

In this notation, C(y) for the cumulative average theory model represents the 
average cost of all units through the yth unit. Therefore the cumulative cost of 
producing the first y items is written as 

[C(y)]y = (Ay-b)y = Ay1-b. 

To compute the cost of producing some consecutive subset of the units produced, 
say from the first unit produced in a lot, yf, to the last unit produced in the lot, yl5 

the following is used: 

Cumulative lot cost = C(yi)yi - C(yf -l)(yf -1) = Aty^-Cyf -l)1_b]. 



The cumulative average theory is used when the units are produced individually. 
When the items are produced in lots, the unit theory variant is used. In this 

model, C(y) represents the cost of the yth unit produced. So, to compute the cost of 
producing a lot of items using this model, the item that has the average cost of all 
the items in the lot must be identified. This algebraic lot midpoint, denoted Q , is 
well known, and is computed as: 

1 

Q = 
(yi-yf + i)(i-b) 

(yi+0.5)1-b(yf-0.5)1-b 
(1) 

Then the cost of a lot is calculated as follows: 

Cumulative lot cost = AQ"b(yryf + 1). 

Although these models are related, the values of the their respective learning 
curve parameters, A and b, would not be the same when estimates for both are 
made for the same system.  Choice of models is made based on the characteristics 
of the manufacturing process, as well as statistical tests of fit. 

2.3 Example of Learning Curve Cost Effects 
To demonstrate the importance of correctly assessing the costs of major 

weapon systems as they relate to quantities procured, we consider a 
representative sample of such systems that are competing for funding by the US 
Army.  Although the systems themselves are not identified, the learning curves 
associated with their variable production costs, as computed with the unit theory 
model, are given in Table 1. As this table shows, the costs of the systems vary 
depending on the learning curve parameters and the quantities of the items 
procured. Note that constraints on year by year procurement quantities are 
imposed, restricting them to be no less than the minimum sustaining rate (MSR), 
below which it is economically infeasible to produce the items, and no greater 
than the maximum production rate (MPR), above which the existing or planned 
production facilities cannot produce the items.  Over this range, the difference in 
unit cost varies by between 16 and 44% for this representative group. 

MSR MPR Unit Cost Unit Cost 
System A b QTY QTY MSR MPR % Diff 

1 1.63 0.315 1200 7500 0.11 0.06 44 
2 12.8 0.155 72 228 5.14 4.29 16 
3 66.5 0.209 72 168 19.54 16.37 16 
4 2.04 0.216 240 864 0.44 0.34 24 
5 7.75 0.209 12 48 2.75 1.92 30 

Table 1. Sample of Learning Curve Systems (costs in $ Millions) 



These effects of learning curves on unit costs are significant, especially when 
taken in the context of the estimated costs of yearly procurement lots. Figures la, 
lb, and lc depict the yearly effect of the difference in lot costs resulting from the 
learning curve effects estimated for systems 1, 2, and 3 from Table 1, respectively. 
Plotted in each of these figures is the yearly cost of a production lot whose size is 
the arithmetic mean of the MSR and MPR computed using the MSR, the MPR, 
and the average lot size as the basis for calculating the lot cost. This cost of the 
average lot would likely be used if the learning curve unit costs could not be 
computed in the mathematical programming model.  Note that yearly differences 
in excess of $200 million are not uncommon, representing departures from the 
cost estimates used by staff budget analysts. Failure to account for these 
differences reduces the usefulness of the acquisition strategy optimizer. 
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Figure la. Yearly Lot Cost Comparison for System 1 



1200-r 

1000 

800 

600-- 

400-- 

2O0-- 

0 

 Unit Cost atMSR 

 UnitCostMPR 

 Avg Unit Cost 

W 

i 1—I 1 1—I—I—I 1 1 1—l h •i 
1     2     3     4     5     6     7     8     9    10   11   12   13   14   15 

Year 

Figure lb. Yearly Lot Cost Comparison for System 2 
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Figure lc. Yearly Lot Cost Comparison for System 3 



3. MATHEMATICAL FORMULATION 
The purpose of the VAA optimization model is to produce a "good" and 

feasible acquisition strategy for the procurement of weapon systems and 
equipment over a 15-year period.  This optimization model utilizes a formulation 
similar to those of Phoenix and FOMOA and can be represented as follows. 

Maximize: Force effectiveness 
Subject to: Budget ceiling by year 

Force structure requirements 
Production limitations 

The method developed to incorporate learning curve costing into the 
optimization formulation is presented in this section. 

3.1 Objective Function 
The objective of the optimization is to suggest a mix of systems for 

procurement that will produce a force that is as effective as possible in combat, 
subject to constraints on budget, force structure, and production capabilities.  The 
contribution of the various candidate systems to the effectiveness of the fighting 
force with respect to several factors is evaluated and quantified, and these various 
measures are integrated using a multi-attribute decision-making methodology. 
The result is a single measure of a system's contribution to the effectiveness of the 
overall force for each year the system will be in the force.   This measure is then 
used to form the objective function coefficient, vij, which is the per-item 
contribution of the system to force effectiveness. Let xy- be defined as the quantity 
of system i procured in year j, where j=l,..., n, with n being the number of years 
in the planning horizon. Considering m systems in the analysis, the objective 
function is written as 

n    m 

Maximize/   /,viixiy 
j=l i=l 

3.2 Constraints on Production Quantities 
As discussed above, the production quantities for each system in each year of 

production are constrained to be between the MSR, denoted Pmin^, and the MPR, 
denoted Pmaxjj. Also, the total quantities produced over the life of the 
procurement of a system must be sufficient to modernize a specified force. This 
force is typically identified by the study sponsors, and might be stated in terms of a 
particular set of units, such as the Contingency Corps; a category of units, such 
as all light divisions; or some acceptable range of the total quantity might be 
specified, denoted Rimi^ to Rmaxj. 

The procurement quantities for some systems are restricted in the sense that 
wide swings in the number produced in successive years are not possible.  So 
constraints are added to preclude differences in production quantities in 

successive years beyond some given percentage, p^. 



Finally, we want to account for the possibility that a system might not be 
recommended for procurement, meaning that a feasible solution can have 
procurement quantities of zero, as well as within the specified range.  To deal 
with this possibility we introduce a binary variable defined as follows: 

[X if system i is recommended for procurement, 
Uj = \ 

[0, otherwise. 

Then the following constraints are used: 

Pminijui ^ xij ^ PmaxijUi; i = l,-,m; j = l,...,n; 

d-Pi^ij-l^Xij ^d+Pi)xij_i; i=l,...,m; j = 2,...,n; 

n 
RminiUi < 2 Xy < Rmax.; i = 1,..., m. 

3.3 Budgetary Constraints 
We note at the outset that there is a separate budgetary constraint for each 

year in the time period, j, of interest for the study.  In each year, no more than B; 
can be expended for procurement in year j.    Funds designated for use in a 
particular year cannot be carried over into following years.  The model will 
maximize effectiveness which is accumulated in the objective by the procurement 
of equipment through the expenditure of funds.  The funds available in each year 
are specified in these budgetary constraints, so their accuracy is extremely 
important to obtaining a valid solution.  In this section we develop an approximate 
method for representing the learning curve costs that will ensure this accuracy. 

We introduce the following additional notation. 

Aj = first unit cost of system i, 

h[ - cost/quantity slope parameter of system i, and 

yy = cumulative number of system i produced through year j, 

j 

= Xxik- 
k=l 

Three components of costs are considered in the budget constraints.  These 
components are fixed costs, variable production costs without learning behavior, 
and variable production costs with learning behavior.  Following is a description 
of each. 

Fixed costs are assessed when a program is implemented.  They are not a 
function of the quantity procured. There are two types of fixed costs that are 
considered.  The first type is research, development, test and evaluation (RDTE) 



cost which is incurred prior to production. The second is fixed production cost 
which is usually assessed prior to and during the first few years of production. 
Fixed costs are denoted as cy, representing the sum of the RDTE and fixed 
production costs of system i in year j, and are assessed only if the system is 
recommended for procurement.  That is if Uj = 1, then  Cjj is assessed by the 
model. Otherwise no fixed costs are assessed.  RDTE expenditures made prior to 
the 15 year period of analysis are considered sunk. 

The costs for some candidate systems either exhibit no learning behavior, or 
there may be some component of the cost that exhibits no learning behavior. Thus 
the option for a "non-learning" variable cost is included in the formulation of the 
budget constraints. This cost component is denoted as qj, the non-learning cost of 
producing an item of system i in year j. 

Finally consider the learning curve costs. Using one of the variants of the 
power form of the learning curve as described above, we denote learning curve 
portion of the cost of a lot, which is a function of the lot quantity, x^, as well as the 
quantity produced prior to that lot, y^, as C(XJJ, yij_i), where 

1_ 
hi 

Cfxipyij-i^Ai (*ij)(l-bi) 

(yij- l + xij + 0.6)1-bV1 + 0.6)1-b' 

when the unit theory is used, and 

l-bi J-bi 
£(xiJ'yiJ-l) = Ai(yiH+xij)      ' ~Ai(yij-l)      '> 

when the cumulative average theory is used. 
The budget constraints are then written as: 

m 

i=l 

cijui+cijxy + 
e(xipyiJ-i)]^Bj,j=i,. n. (2) 

3.3 Approximation of the Learning Curve Cost Term 
Ideally, this exact but nonlinear form of the budget constraint would be used in 

the optimization.  However, the size of the problem makes this approach 
impractical.  Our goal is to approximate the learning curve terms in these 
constraints using a piecewise linear function.   For cumulative average theory 
learning curves this process is simple.   Unit theory learning curves require more 
work since they are nonseparable with respect to the decision variables of the 
problem.  In this section we reformulate the learning curve terms in a way that 
will make the them separable, and then correct for any error that arises as the 
result of this change in form. 

10 



For the case of cumulative average theory learning curves, we write the cost of 
producing a lot of system i in year j as 

CijXij = (Aiyij-
b. )yij - (Aiy^f13. )yij_1, (3) 

where 6y is the average unit cost of the items produced in the lot. Note that the 

right hand side of this expression is separable using the cumulative total quantity 

of system i produced through year j, y^.  Furthermore, each term on the right 
hand side is concave, and easy to approximate in a piecewise linear manner. 

For unit theory learning curves, we know that cyxy = AjQy    ;xy where Q^ is 

computed using (1).  In order to achieve the desired separability we consider the 
following approximation: 

l_ 
b 

CijXij - AiQy"1"1 y j- - AiQij.!-0* y iH where Qy =   ,     '    1  . 
[(yy + 0.5)1-bl(0.5)1-bl 

representing the lot midpoint of a lot of size y^. Note that the terms on the right 
hand side of this expression are also seperable with respect to the cumulative 
quantities produced. 

We now examine the error in using this approximation.   Our purpose is to 
make an adjustment to the approximation so that it will be equivalent to (3). 
Then, using yy as the decision.variable, we will have separable terms in the 
budget constraints that can be approximated in a piecewise linear manner. 

Letting cy = AjQy     ;, compute the error introduced, D^, as follows: 

^ij =(cijyij ~cij-iyij-l)-cijxij- 

We note that this error function is also nonlinear and nonseparable.  No apparent 
benefit has been gained by this approximation. However, when we evaluate the 
error function over the range of the parameters experienced in the problem under 
consideration we observe that the magnitude of Dy is very small in comparison to 
the corresponding learning curve cost term in the budget constraint.  That is, 

Dy«CyXy. 

Furthermore, when the error term is expressed as a proportion of the 
approximation, My, we find that its value is very stable for given values of Ai and 
bi for all but the first year of production, over relevant ranges of xy for all the 
systems that we have seen.  That is, 

1 1 



Ms = 
D;i 

c^ii-c^y^! 
constant. (4) 

An exception exists in the first year of production.  In that year, Dij = My = 0 since 
the approximation is exactly correct. 

Figures 2a and 2b give examples of these observations for two systems whose 
costs are described by learning curves.  Figure 2a shows an example of a learning 
curve system that has a fairly severe curvature. Note that even in this extreme 
case, the worst case error is small.  Figure 2b represents a more typical case 
where Mij is almost constant over the years.  The consistency of these values is 
surprising, since the yearly quantities vary from 1,200 to 20,000. 
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Figure 2a. Example of My Values (Ai=3.28, bi=.258)) 
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Figure 2b. Example of My Values (Ai=.1796, bi=.1901) 

We estimate the value of each correction proportion, My, by computing the 
upper and lower feasible cumulative production quantities, yy, that arise by 
summing the corresponding maximum feasible values of the production 
quantities, xik, k=l,...j, and summing the minimum feasible values of those 
same quantities.  So we have 

yiJehjmin'yiJmax]'where 

yijmin =.2>ikmin 
and ^ijmax = I *ik 

k=l k=l 
'•max 

Using (4), and substituting yijmin and yij-imin for yy and yy.i, respectively, we 
obtain Mymin.   Following the same procedure, but this time using the maximum 
values of yy and yy_i, we get Mymax.  Empirically, we have found that the 
arithmetic average of these two quantities gives a good value for My. That is 

My 
Mji +M;;    . Umax ymin 

2 (5) 
Using this method, we note that the error for each production year by applying 
this correction would be less than 1 percent for the system shown in Figure 
2a, and within 2 percent for all the candidate systems examined in the VAA 
Study. 

We can now rewrite the learning curve cost terms using (5) in the following 
manner.   For each year j, we have: 

13 



m m 
Xctixö^Bj»l(l-Mö)(cöyä-cti_1yti_i)^Bj. 
i=l i=l (6) 

Note that for the cumulative average learning curve model, 
My = 0, and cy = AjVy- '. By using this approximation and by using yij as the 
decision variable, these learning curve terms become separable, and although 
they are still nonlinear, they can be dealt with using a piecewise linear 
approximation. 

3.4 Piecewise Linear Approximation of the Learning Curve Term 
Now that the learning curve cost terms have been made separable, we can 

approximate them as a sequence of linear pieces.  The technique used here is 
standard and is described by Bradley, Hax, and Magnanti [1].  Recall that each 
cost term is of the form 

f (Yij) = 
AjQjj    »yjj, for unit theory, and 

Ajyjj-biyij = Ajyjj     *, for cumulative average theory. 

This function is graphed for one of the systems included in the Value Added 
Analysis, and is shown in Figure 3.  This system is the same one that was 
discussed with regard to Figure 2a, and the unit theory curve is shown. 

0   ! 60    120   18o!24030036«42048054060(i660   720   780&409(»0 

V- yo 4|1     Yjj     Hi ij2 i3 *ij4 

Figure 3. Piecewise Approximation of Cost Curve 
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It is easy to show that this function is concave.  It is also very smooth. We 
have found that, over the range of possible values of yy, that the number of 
segments needed to approximate this curve varies depending on the parameters 
of the learning curve and the range of feasible values for yy.  The relevant range 
of yy is defined as follows.  The minimum value of yy is the minimum production 
quantity in the first year of production. Define this quantity as |iyo. The 
maximum value of yy is the sum of the maximum production quantities over all 
the years of production.  Define this maximum quantity as nyp, where p = the 
number of segments in the approximation. 

To find the end points of the line segments that approximate f(yy), we find 
M-ijl> H1J2, -•-»M-ijp-1, values of yy, such that the following relationship of the 
derivatives holds. 

f (Wji) - f'(Wjo) = f'(Hij2) - f' (Wjl) = • • • = f '(Hyp) - f'(Wjp-i). 

Next, we define the following variables. 

Syk = the amount greater than |iyk,  where 

0 < Syk < Wjk - Wjk-i; k = l,...,p; 

so that 
yij = uyo + öyi +... + 5yP. (7) 

w^ 
_ f 1, if Syk = nijk - Hjjk_i, 

ljk[0, ifSijk<Hyk-uijk_1. 
(8) 

The purpose of these binary variables, wyk, is to ensure that 5yk will never 
be positive unless 8yk-i is at its maximum, for 2 < k < p.  These conditions are 
enforced through the use of the following constraints. 
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(M-ijl - ^ijo)wijl ^ 5ijl ^ M-ijl - HijO> 

(n*j2 ~ ^ijl)wij2 ^ 5ij2 ^ (Hjj2 - mjl)wijl> 

(Hijp-1 - ^ijp-2)wijp-l < 5ijp.i < (Hijp_i - ^ijp-2)wijp-2! 

O^ijp^ijp-^lijp-ijwijp^. 
(9) 

Notice that the binary variables, wyk, act as switches for the 8ijk variables 
such that, when öyi is pushed to its maximum allowable value, (lyi - |iijo, wiji 
toggled from a value of 0 to a value of 1. Thus, Sp, previously constrained to be 
zero, is allowed to grow toward its own maximum value.  Now, calculate the 
slopes of each segment.  Let 

is 

f(Hijk)-f(Hijk-l) 

mjk - mjk-i 

Then we can approximate each cost term as 

cij-yij = f (yij)« f (mjo) + ISijk5ijk, 
k=l 

with the additional constraints that 

(10) 

(11) 

yij=mjo+ I5ijk> vi>j- 
k=l 

The approximation in (6) is then written as 

P m 
i(l-Mij) f(nij0)+ XSijkSijk-f^ij-io)- iSij-ikVlk UBy 
i=l ^ k=l k=l J 

(12) 

(13) 

with constraints (9) and (12), and using the convention that moo and Sioo are 
defined to be zero. 
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This approximation, then, introduces 2p-l variables, of which p-1 are binary, 
and 2p constraints to the formulation of the problem for each yij variable.  The 
dimensionality of the problem is thus greatly increased. 

4. IMPLEMENTATION AND PERFORMANCE 
This optimization model was implemented on an IBM RS 6000, model 590 work 

station using the IBM Optimization Software Library (OSL). See IBM Corporation 
[7]. We elected to write a front-end application program in FORTRAN that reads 
the data, processes the data into the appropriate data structures for the optimizer, 
calls the optimization subroutines, and then prints the results. 

Frequently, the speed of solution of a mixed integer program can be improved 
by exploiting relationships between the integer variables and introducing 
additional constraints in the formulation.  A good discussion of the techniques 
used to identify the additional constraints is given by Johnson and Nemhauser [6]. 
Although the internal OSL preprocessor failed to find any adjustments to the 
formulation that would improve its performance, a close examination of the 
structure of the formulation yielded several performance enhancing adjustments. 

The first set of constraints introduced was based on the relationship between 
the binary variables that are used to implement the piecewise linear 
approximation of cost curve.  Recall that we include a cost curve for each system i 
for each year j of production, introducing several binary variables, wjjk, into the 
formulation, the number depending on the number of linear pieces employed in 
the approximation.  Since the cost curves are based on the cumulative quantity of 
system i procured over the production years, yij, we know that yij > yij_i.  Thus, 
using (12), we know that Sjjk ^   Sij-lk for all j > 1.  Therefore, we can impose the 
following constraints on the Wijk binary variables. 

wijk > wij.ik;  for all j > 1, i = l,...,m, k = l,...,p. 

When these constraints are imposed, branches become much more powerful 
in the sense that setting one variable to the value 0 potentially sets many others as 
well. 

Similarly, we see immediately that all the wyk variables will be 0 unless the ui 
variables are set at 1. So, another set of constraints that is implicit in the 
formulation but whose explicit inclusion improves the performance of the 
algorithm are expressed as follows: 

ui > wijk, for all j > 1, for all i = l,...,m, k = l,...,p. 

These constraints ensure that all wjjk variables are set to 0 if Ui is 0, making 
branches on the ui variables very powerful. 

As the result of the additional 500 constraints, the performance of the model 
was much improved.  Ultimately, 45 systems were analyzed, of which 22 had 
learning curve costs.  The mixed integer program had about 4,000 rows with 3,000 
variables, of which about 800 were binary integers, and 5,500 nonzero elements. 
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The run time for this improved formulation was reduced to between 2 and 45 
minutes of CPU time, with an average of 20 minutes. Without the performance- 
enhancing modifications, the model would not have been as responsive as was 
necessary to provide the required analytical support. 

5. CONCLUSIONS 
The methodology introduced in this paper seems to do a good job of 

incorporating the learning curve effects on costing into the budget constraints of 
the Value Added Analysis acquisition strategy optimization.  The introduction of 
this feature greatly increases the computational overhead associated with solving 
problems of this nature.  As a result, implementation of this enhancement to 
acquisition strategy models requires significantly increased computing resources 
to obtain a solution. 

This methodology is an approximation that has yielded results in which the 
expended program dollars, calculated using the nonlinear cost function and the 
optimized quantities, were within two percent of the nominal value.  Considering 
the approximate nature of costing systems that will only be procured in the far 
distant future, two percent is adequate. 

The use of this methodology has been shown to improve the quality of the 
optimization for the purpose of acquisition strategy by maintaining consistency 
between the costs used in the model and those used by the programming and 
budgeting staff.  In this era of tightly constrained budgets for procurement, 
accurate cost analysis is essential to obtain the most from limited funds.  This 
methodology has enhanced analytical efforts that help accomplish this task.  This 
optimization model was successfully used to assist the Army Staff in evaluating 
the various alternative weapon systems considered for procurement.  As such, 
this optimization model has provided a new dimension to the PPBES process for 
the Department of the Army Staff. The Staff now has available in a single model 
the capability to pull together data, policy, and guidance quickly and accurately in 
order to develop a balanced Army program. 
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